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ABSTRACT The rapid fluctuations of protein atoms de-
rived from molecular dynamics simulations can be extrapolat-
ed to longer-time motions by effective single-particle stochastic
models. This is demonstrated by an analysis of velocity
autocorrelation functions for the atoms of lysine side chains in
the active site of RNase A. The atomic motions are described
by a bounded stochastic model with the friction and noise
parameters determined from a molecular dynamics simulation.
The low-frequency relaxation behavior is shown to result from
collisional damping rather than dephasing. Extrapolation of
these results to the quasistochastic motion of the heme group in
myoglobin provides an explanation of 57Fe Mossbauer spec-
troscopic data.

The internal motions of protein molecules occur over a wide
range of time scales (1). They extend from the vibrations of
single atoms and torsional oscillations of side chains in the
femtosecond to picosecond range, through motions of larger
protein segments on the nanosecond to microsecond time
scale, to global fluctuations, including the transition to the
unfolded state, that require microseconds to seconds or
longer. Some of these motions are relevant to protein
function (1-4).
An understanding of protein dynamics is thus a prerequi-

site for a complete description ofprotein function. Simulation
of the atomic motions by molecular dynamics provides a
theoretical approach to this problem (1, 5). Due to the
computer-time requirements of such simulations, most stud-
ies of proteins have been limited to subnanosecond periods.
Since many processes that are of functional importance or
experimentally measurable occur on longer time scales, it is
desirable to extend the theoretical methodology to include
such events. Vibrational analyses of proteins have demon-
strated that the lowest-frequency normal modes are near 3
cm-' (6), corresponding to periods of 30 ps. Since the normal
mode description is not limited in time scale, this requires
that longer time phenomena result from anharmonic effects,
including transitions among multiple minima (7, 8). Examples
include reactions with an activation barrier and slow confor-
mational changes, such as the quaternary transition in he-
moglobin.
One approach to long-time phenomena is stochastic mod-

eling ofthe internal motions (9, 10), in which only the relevant
portion of the protein is explicitly included and the remainder
of the molecule, as well as the solvent, serves to provide an
effective potential, a frictional drag, and a heat bath (11). We
here make use of picosecond molecular dynamics results to
implement a stochastic model for atomic and group motions
in proteins. The damping and diffusion coefficients required
for the model are derived from a stochastic boundary simu-
lation for RNase A (12) and the atoms examined are those of
lysine side chains. The resulting stochastic parameters are

extrapolated to the motion of the heme group, which can be
compared with phenomenological descriptions of myoglobin
57Fe Mossbauer experiments (13-16). It is found, in contrast
to a published assertion (13), that the molecular dynamics
simulations and their stochastic extensions, including barrier
crossings, provide a consistent picture of protein dynamics.

THEORETICAL FRAMEWORK

A molecular dynamics simulation determines the phase space
trajectories of protein atoms by numerical integration of the
Newtonian equations (1, 5). The motions of the densely
packed protein atoms resemble the dynamics of classical fluid
particles on a time scale during which diffusional transport
does not exceed atomic diameters (1, 5). On longer time
scales, account has to be taken of the fact that protein atoms
are localized by their covalent interactions, while those in a
fluid are not. The motion of individual fluid particles for times
longer than the microscopic collision times can be modeled
by use of effective single-particle equations of motion. The
Langevin equation with a potential of mean force, V(x),

-= v, m-d= -myv - VV(x) + A(t), [1]
dt dt

and the corresponding diffusion (Fokker-Planck) equation
can be used (11, 17). In Eq. 1, x and v are the relevant particle
coordinate and velocity, -y is a friction coefficient, and A(t) is
a fluctuating force that can be approximated by Gaussian
white noise on the time scale considered. One expects such
a simplification to be applicable to the motion of atoms or
groups of atoms in proteins for times long compared to the
time of atomic vibrations (10). The protein and solvent
environment exert the average potential V(x) that confines
the motion and determines the friction coefficient -y and the
amplitude of the noise term A(t).
To investigate the stochastic character of internal protein

motions one has to determine whether the results of molec-
ular dynamics simulations can be reproduced by Eq. 1. Such
studies, based on the displacement correlation function, have
been made for tyrosine side chains (10) and other group
motions (18) in proteins. Here we make use of the velocity
autocorrelation function, CQ(t) = (v(t) v(0)), which has been
employed recently in determining the frictional coefficient for
the Langevin buffer atoms in stochastic boundary simula-
tions (12, 19). The velocity autocorrelation function is used
because it relaxes rapidly (less than 1 ps), is dominated by
frictional effects (i.e., the relaxation depends sensitively on
'y), and is rather insensitive to the characteristics of the
potential V(x). This contrasts with the displacement autocor-
relation function, which has a more complex behavior for
protein atoms (18).
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METHOD
We have analyzed a stochastic boundary molecular simula-
tion of a portion of RNase A that included the active site and
the surrounding solvent molecules (12). The motions of the
atoms of two active-site lysine residues (Lys-7 and Lys-41)
were examined. Since a lysine side chain is long and flexible,
the influence of fluctuations in the environment on the motion
of its individual atoms should be significant. Both Lys-7 and
Lys41 are in the active site ofRNase A, where they experience
interactions with other protein atoms and with solvent mol-
ecules (see figure 1 of ref. 12). In the stochastic boundary
simulation, all the atoms of the two lysines were treated by full
molecular dynamics, except for the Ca ofLys41, which is in the
buffer region and is, therefore, constrained and coupled to a

random force (12, 19). A comparison of the behavior of these
two side chains, which are otherwise in very similar environ-
ments, furnishes information on the range ofthe influence of the
stochastic boundary.
The velocity autocorrelation functions were determined

for a time interval between t = 0 and t = tmax, where tmax is
1 ps, by averaging over a 30-ps molecular dynamics trajec-
tory. The frequency spectrum CQ(w) [C(jw) = fodt cos(wt)-
CQ(t)] was calculated by numerical integration over the time
interval (0, tmax). Since CQ(t) is known only for a finite time
interval, its spectrum is defined mathematically solely at the
discrete values (a = 2i7rnt- ,, n = 0, 1, 2,. However, CG(O)
was evaluated also for other values of which results in the
presence of oscillations of frequency 2irtlx, corresponding
to the artificial period of tmax in CQ(t); these oscillations act to
smooth the discrete spectrum, as an alternative to the
introduction of a window function.
The decay of the velocity autocorrelation functions of the

lysine atoms is so fast that during the relaxation process the
atoms explore only the region in the neighborhood of the local
potential minimum governing their average positions. Thus,
the effective potentials are essentially harmonic and the
velocity relaxation process can be represented by a Langevin
harmonic oscillator model; i.e., in one dimension a potential
of the form V(x) = V2mwoo(x)2 is used in Eq. 1. For 00 > 'y/2,
which corresponds to the present applications, the oscilla-
tions are underdamped. In this case the velocity autocorrela-
tion function (11) is given by CQ(t) = (v2)e-'/2[cos(w1t) -

(y/2cwl) sin(w0t)] with wl = (Q2 - /4)112 and (v2) = kBT/m
(where kB is the Boltzmann constant and T is the tempera-
ture). The corresponding spectral density is Ce(w) =

(v2)7y2/[(Q - W2)2 + y2W2]. This expression has been fitted
to the low-frequency portion (w < -150 ps-1) of Ce(co)
obtained from the molecular dynamics simulation; to yield
agreement with the simulation results for certain atoms a
superposition of two independent modes with different wo
values was used.

RESULTS

The velocity correlation function CQ(t) and the spectral
densities CO(w) obtained from the simulation are shown in
Fig. 1 for the atoms of the Lys-7 side chain; the spectral
densities for the atoms of Lys-41 are also shown for com-
parison. For every atom (see Fig. la), CQ(t) exhibits a decay
with a relaxation time of less than 0.1 ps onto which fast
oscillations are superimposed. In Ce(j) shown in Fig. 1 b and
c, the fast oscillations appear as discrete lines. The sharp
lines near 220 ps-1 (=1000 cm-1) correspond to skeletal
vibrations of the lysine chain; this series of lines, associated
with the motions of CO, CY, and C8, leads to the beats
modulating the rapidly oscillating component ofCQ(t) in Fig.
la. In addition, there is a line at about 300 ps-1 for the
terminal NC atom that corresponds to a deformation mode of
the NH3 group.

The low-frequency region (0-100 cm-') of Ce(w) in Fig. lb
is congested due to a large number of lines. This feature, an
essential property of all the spectral densities, is due to the
interactions of the lysine atoms with their environment. The
effect of the environment can be seen clearly from C(jw) of
a free lysine chain in the absence of solvent shown in Fig. 2;
the free chain has been simulated with a harmonic constraint
and a random force acting on the Ca atom. The low-frequency
part of Ce(w) for the atom NC of the free lysine consists of only
a few resolved lines. This demonstrates that the broadening
of the Lys-7 spectra is due to coupling to the immediate
proteins and solvent environment. The NH3 deformation
mode for the free lysine chain lies at about 350 ps-1, in
contrast to the value 300 ps-1 obtained for the hydrogen-
bonded NH3 group. The frequency lowering of the solvated
NH3 group is due to the fact that it is coupled to water
molecules, whereby the effective mass of the vibration is
increased. This interpretation is in accord with the fact that
the line at 220 ps-1, which corresponds to a skeletal vibration
of the neighboring Ce atom, is not shifted by solvent though
its intensity is increased.

Fig. lc presents Ce(w) for the Lys-41 side chain, whose Ca
atom is in the stochastic buffer zone and so has its motion
described by a Langevin equation instead of Newtonian
mechanics. As expected, Ce(w) for Ca of Lys-41 shows a
strongly broadened spectrum, in contrast to that for Cc of
Lys-7. However, the CP atom of Lys-41 already shows
low-frequency behavior that is similar to that of Lys-7, and
the other side-chain atoms of the two lysines have essentially
identical low-frequency spectra. This indicates that the range
of influence of the stochastic boundary is very short. Further,
because the Langevin equation applied to Ca of Lys-41
essentially uncouples the side chain from the protein, the
similarity of the low-frequency spectra of Lys-7 and Lys-41
demonstrates that the dominant broadening mechanism aris-
es from collisions with the environment (particularly solvent
in this case), rather than coupling to vibrational modes of the
rest of the protein. This is in accord with the absence of
broadening for atoms other than CO in the free lysine
simulation.
The congested vibrational bands observed in the low-

frequency range can be approximated by one or two stochas-
tically damped harmonic oscillators. The damping simulates
collisional effects and any coupling between the closely
spaced vibrational modes. When CQ(t) and Ce(w) are fitted to
the molecular dynamics results by adjusting the values of WO
and y, the parameters shown in Table 1 are obtained; only for
CE and NC are two oscillators required. The broken lines in
Fig. 1 b and c correspond to the fits and demonstrate that
excellent agreement is obtained in the low-frequency range.
This supports the supposition that a stochastic single-particle
model is adequate for describing these motions. It is such
low-frequency modes that dominate the amplitudes of the
atomic fluctuations (6, 18).
The friction coefficients for the various atoms lie in the

range 19-45 ps-1 (see Table 1). They show excellent corre-
spondence for the two lysine residues, in accord with their
comparable protein and solvent environments. Diffusion
coefficients calculated by use of the Einstein relation, D =
kBT/m-y, for the bounded diffusive motion of the lysine
side-chain atoms are in the range 4-10 x 10-5 cm2/s, which
is somewhat larger than the self-diffusion coefficient (3 x
10-5 cm2/s) obtained for the water model used in the
simulations.

DISCUSSION

It has been shown that the motions of protein atoms calcu-
lated by molecular dynamics simulations that extend over 100
ps exhibit properties that can be modeled by single-particle
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FIG. 1. Velocity autocorrelation functions and their spectra densities for lysine side-chain atoms. (a) C,(t) for atoms of Lys-7; (b) Cv(w) for atoms
of Lys-7; (c) Ce(w) for atoms of Lys-41. Solid lines are from simulation and broken lines are Brownian oscillator fits (see text and Table 1).

stochastic equations. The comparison of the results obtained
for lysine side chains in three different simulations demon-

strates that the dominant factor inducing the stochastic
behavior is the collisions with the local environment (protein
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FIG. 2. Spectrum of the velocity autocorrelation function for the
atom NC of Lys-41. Solid line, in solution as part of protein; dotted
line, unsolvated free chain.

and solvent) rather than the coupling with the high density of
low-frequency modes of the remainder of the protein.
The present results apply to the oscillations of individual

atoms of a flexible side chain moving in a single potential
well. We now consider the extension of these results to the
displacement of larger protein segments over longer times.
Although the lysine atoms were found to be in the interme-
diate damping limit, purely diffusive behavior is expected for
the motion of larger, relatively rigid protein segments (e.g.,
the heme group). Using Stokes law to scale the lysine atom
diffusion coefficient, we write D as proportional to (mReff)-f,
where m is the mass and Reff is the effective hydrodynamic
radius of the segment (20). To take account of the fact that
longer time motions (longer than -100 ps) involve transitions
over barriers, it is necessary to go beyond the harmonic
oscillator approximation for the potential V(x). For a static
potential with a repeating multiminimum structure, the effec-
tive diffusion coefficient, Doff, has the form (15)

Deff = DOexp(-AE/kBT), [2]

where Do is the diffusion coefficient for motion in a well and
AE is the height of the barriers separating the wells. For
barrier heights significantly greater than kBT, as required for
Eq. 2 to be valid, the value of AE clearly cannot be
determined from standard picosecond simulations because
times of nanoseconds or longer are involved. Thus, AE must
be obtained in another way; adiabatic mapping (21), activated
dynamics simulations (22), or experiment (13-16) can be
used.
The above considerations can be applied to the "7Fe

Mossbauer effect in myoglobin and its phenomenological
analyses (13-16). Several aspects of the experimental obser-
vations are important. The Lamb-Mossbauer factor, -Info,
increases linearly with temperature between 0 and 170 K and
then rises much more rapidly between 200 and 300 K. Since
the Lamb-Mossbauer factor is related to the mean-square
displacement that occurs in times shorter than the lifetime of
the 57Fe excited state (0.14 /s), this suggests that there is a
change in the protein dynamics between 180 and 220 K.
Further, a broad line appears in the Mossbauer spectrum at
about 180 K, and both its width and its intensity increase
strongly with increasing temperature; the linewidths reflect
relaxation processes on the time scale 1 s t < 100 ns.
To model these results, the iron motion has been repre-

sented in one dimension (13-15), as well as in two and three
dimensions (16). The strong temperature dependence of the
width IF of the broad line (it increases by approximately a
factor of 4 between 200 and 300 K) has been fitted by
assuming that the iron moves in a temperature-independent

Table 1. Oscillator approximation to low-frequency motions

Lys-7 Lys-41

Atom aoO, ps 1 y, ps l o PsPs-Ps-
Col 28 45 27 40
C-Y 28 19 27 19
Cs 31 26 28 27
CE 13 22 13 22

45 19 47 19
NC 14 40 24 40

50 30 72 30

The quantities wo and y are the effective oscillator frequency and
friction coefficient, respectively (see text).

multiminimum potential with a harmonic envelope (15, 16).
Use of Eq. 2 leads to AE equal to 1.8-2.1 kcal/mol (1 kcal =
4.18 kJ). Deffcan be estimated from the magnitude ofrF, since
it depends on the time scale of the Fe motion. With experi-
mental estimates for AE and Deff, Eq. 2 can be used to
determine Do. The resulting value for D0 is 0.8-1.1 x 10-
cm2/s (16), approximately 50 times larger than Deff at 250 K.

If -Info is related to the mean-square displacement (&X2)
by the Gaussian approximation (see below), a room temper-
ature value of (AC2) = 0.065 A2 is obtained. This leads to a
force constant k for the envelope potential equal to k/kB = 4.6
x 103 K/A2 from the relation k(AX2) = kBT. However,
between 300 and 225 K, -Info decreases much more rapidly
than expected for a harmonic potential. To explain this
temperature dependence, phenomenological models have
been introduced in which there are one or more very narrow,
deeper traps [AE1,p 4 kcal, with ( X2)1/2i0-4 and 6 x 10-2
A for one- and three-dimensional models, respectively (16)].
The observed temperature dependence of -In fo is then
governed by the change in the probability of being excited to
the envelope potential versus that of being in the deeper well.
The above description of the iron motion is generally

consistent with simulation results for the dynamics of myo-
globin (8), which demonstrate that the underlying potential
surface is characterized by a large number of thermally
accessible minima in the neighborhood of the native struc-
ture; the mean-square fluctuations are a superposition of
oscillations within a well and transitions among wells. Com-
puter simulations ofmyoglobin (K. Kuczera, J. Kuriyan, and
M.K., unpublished results) have demonstrated that the iron
is tightly coupled to the heme and that the longer-time,
larger-scale iron displacements involve motions of the entire
heme group. For the heme group, one estimates a diffusion
coefficient Do of 2-5 x 10-7 cm2/s by Stokes law scaling of
the lysine atom values. This is in accord with the estimate of
Do from Mossbauer spectroscopy cited above. However, the
extreme narrowness of the deep traps in the phenomenolog-
ical models (13-16) is rather surprising. A possible interpre-
tation is that the effective potential in which the iron moves
is itself temperature dependent. It has been shown by
crystallographic studies that myoglobin contracts as the
temperature is lowered (23). Further, the onset of the
increase in -lnfo and the appearance of the broad line occur
at a temperature in the neighborhood of 200 K, which
coincides with the melting of the aqueous crystal environ-
ment of the protein (24). Normal mode and molecular
dynamics simulations have shown that the dominant contri-
bution to mean square displacements came from larger-scale
correlated motions ofmany atoms (6, 18). Since these involve
the protein surface, it is likely that they are quenched when
the solvent freezes. The effect of this on the iron motion could
be that it is trapped in one of a series of local minima, whose
effective barriers are significantly higher in the low-temper-
ature system. One possibility is a minimum in which the heme
itself is trapped; from the simulation the root-mean-square

NC
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fluctuation of the iron relative to the heme is 7 x 10-2 A at
200 K, on the order of the estimate from the phenomenolog-
ical model (16).
The Mossbauer and x-ray estimates of (AX2) at 300 K are

0.065 and 0.11 A2, respectively (13). A 120-ps simulation of
carboxymyoglobin at 300 K (K. Kuczera, J. Kuriyan, and
M.K., unpublished results) yields (Ax2) = 0.057 A2 with the
dominant component of the motion in the heme plane.
Additional motions on the Mossbauer time scale between 1
and 100 ns clearly cannot be sampled by such a subnano-
second simulation and must involve crossing of higher
barriers (see Eq. 2). The slower motions have been suggested
to contribute about 40% of the Mossbauer value of (AX2) (13).
This would mean that the simulation result is too large by
30%. Such an error in a vacuum simulation would not be
surprising, and there is no reason to propose, as done in an
analysis (13) of the Mossbauer data, that simulations yield
motions that are 100 times too fast. An additional point is that
the experimental estimates of (AX2) from Mossbauer or x-ray
scattering may be in error. Only in the Gaussian approxima-
tion, which corresponds to harmonic motion, can the struc-
ture factor be written as f = exp(-k2(AX2)). Thus, the
observed "values" (13) of (AX2) refer to -Inf/k2, where k is
the momentum of the y-quantum in Mossbauer spectronomy
and the scattering vector in x-ray scattering. Molecular
dynamics simulations have demonstrated that the local effec-
tive potentials for the atomic motions tend to be anisotropic
and anharmonic (1). Consequently, the distributions moni-
tored by Mossbauer spectroscopy may be non-Gaussian, so
that the structure factor itself must be used in a comparison
of theory and experiment (25, 26). Also, it has been demon-
strated by simulations that the magnitudes of the fluctuations
are underestimated by x-ray refinement (26).
The present analysis demonstrates that molecular dynam-

ics simulations and their stochastic extensions, including
barrier crossing, provide a consistent picture of protein
dynamics over a wide range of time scales. Additional
experimental data, as well as further theoretical analyses, are
needed, however, for a full understanding of the internal
motions of proteins.

The authors thank C. L. Brooks, III, P. Tavan, and H. Treutlein
for helpful discussions and assistance with some ofthe computations.
This work was supported in part by the National Institutes of Health.

1. Brooks, C., Pettitt, B. M. & Karplus, M. (1987) Adv. Chem.
Phys., in press.

2. Careri, G. (1974) in Quantum Statistical Mechanics in the

Natural Sciences, eds. Kursunoglu, B. & Mintz, S. L. (Plen-
um, New York), pp. 15-35.

3. Cooper, A. (1976) Proc. Natl. Acad. Sci. USA 73, 2740-2741.
4. Debrunner, P. G. & Frauenfelder, H. (1982) Annu. Rev. Phys.

Chem. 33, 283-299.
5. McCammon, J. A., Gelin, B. R. & Karplus, M. (1977) Nature

(London) 267, 585-590.
6. Brooks, B. R. & Karplus, M. (1983) Proc. Natl. Acad. Sci.

USA 80, 6571-6575.
7. Ansari, A., Berendzen, J., Bowne, S. F., Frauenfelder, H.,

Iben, I. E. T., Sauke, T. B., Shyamsunder, E. & Young, R.
(1985) Proc. Natl. Acad. Sci. USA 82, 5000-5004.

8. Elber, R. & Karplus, M. (1987) Science 235, 318-321.
9. McCammon, J. A., Northrup, S. H., Karplus, M. & Levy,

R. M. (1980) Biopolymers 19, 2033-2045.
10. McCammon, J. A., Wolynes, P. G. & Karplus, M. (1979)

Biochemistry 18, 927-942.
11. Chandrasekhar, S. (1943) Rev. Mol. Phys. 15, 1-89.
12. Brunger, A., Brooks, C. L. & Karplus, M. (1985) Proc. Natl.

Acad. Sci. USA 82, 8458-8462.
13. Parak, F. & Knapp, E. W. (1984) Proc. Natl. Acad. Sci. USA

81, 7088-7092.
14. Knapp, E. W., Fischer, S. F. & Parak, F. (1982) J. Phys.

Chem. 86, 5042-5047.
15. Nadler, W. & Schulten, K. (1984) Proc. Natl. Acad. Sci. USA

81, 5719-5723.
16. Nadler, W. & Schulten, K. (1986) J. Chem. Phys. 84, 4015-

4025.
17. Risken, H. (1984) The Fokker-Planck Equation, Springer

Series in Synergetics 18 (Springer, Berlin).
18. Swaminathan, S., Ichiye, T., van Gunsteren, W. F. &

Karplus, M. (1982) Biochemistry 21, 5230-5241.
19. Brooks, C. L., Brunger, A. & Karplus, M. (1985) Biopolymers

24, 843-865.
20. Cantor, C. R. & Schimmel, P. R. (1980) Biophysical Chemistry

(Freeman, San Francisco), Vol. 2, pp. 549-590.
21. Gelin, B. R. & Karplus, M. (1975) Proc. Natl. Acad. Sci. USA

72, 2002-2006.
22. Northrup, S. H., Pear, M. R., Lee, C. Y., McCammon, J. A.

& Karplus, M. (1982) Proc. Natl. Acad. Sci. USA 79, 4035-
4039.

23. Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, I. D.,
Jr., Kuriyan, J., Parak, F., Petsko, G. A., Ringe, D., Tilton,
R. F., Jr., Connolly, M. L. & Max, N. (1987) Biochemistry 26,
254-261.

24. Parak, F., Knapp, E. W. & Kucheida, D. (1982) J. Mol. Biol.
161, 177-194.

25. van Gunsteren, W. F., Berendsen, H. J. C., Hermanns, J.,
Hol, W. G. J., & Postma, J. P. M. (1983) Proc. Natl. Acad.
Sci. USA 80, 4315-4319.

26. Kuriyan, J., Petsko, G., Levy, R. & Karplus, M. (1986) J. Mol.
Biol. 190, 227-254.

Biophysics: Nadler et al.

D
ow

nl
oa

de
d 

at
 U

ni
ve

rs
ita

ts
- 

un
d 

La
nd

es
bi

bl
io

th
ek

 M
un

st
er

 o
n 

M
ar

ch
 5

, 2
02

0 


